Parsing epileptic events using a Markov switching process model for correlated time series
نویسندگان
چکیده
B Details of posterior computation 3 B.1 Sampling individual channel variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 B.1.1 Channel active features, f (i) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 B.1.2 Channel state sequence, z (i) 1:T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 B.1.3 Channel transition parameters, η . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 B.2 Channel state dynamic parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 B.3 Event variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 B.3.1 Event state sequence, Z1:T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 B.3.2 Event transition parameters, φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 B.4 Event state covariance parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 B.4.1 Event state covariances, ∆l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 B.5 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 B.5.1 Sticky HDP-HMM hyperparameters, γe, αe, κe, ρe . . . . . . . . . . . . . . . . . . . . 10 B.5.2 BP-AR-HMM hyperparameters, γc, κc . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 B.5.3 BP hyperparameter, αc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
منابع مشابه
Parsing Epileptic Events Using a Markov Switching Process for Correlated Time Series
Patients with epilepsy can manifest short, sub-clinical epileptic “bursts” in addition to full-blown clinical seizures. We believe the relationship between these two classes of events—something not previously studied quantitatively—could yield important insights into the nature and intrinsic dynamics of seizures. A goal of our work is to parse these complex epileptic events into distinct dynami...
متن کاملEstimating Stock Price in Energy Market Including Oil, Gas, and Coal: The Comparison of Linear and Non-Linear Two-State Markov Regime Switching Models
A common method to study the dynamic behavior of macroeconomic variables is using linear time series models; however, they are unable to explain nonlinear behavior of the series. Given the dependency between stock market and derivatives, the behavior of the underlying asset price can be modeled using Markov switching process properties and the economic regime significance. In this paper, a two-...
متن کاملModeling the complex dynamics and changing correlations of epileptic events
Patients with epilepsy can manifest short, sub-clinical epileptic "bursts" in addition to full-blown clinical seizures. We believe the relationship between these two classes of events-something not previously studied quantitatively-could yield important insights into the nature and intrinsic dynamics of seizures. A goal of our work is to parse these complex epileptic events into distinct dynami...
متن کاملCold standby redundancy optimization for nonrepairable series-parallel systems: Erlang time to failure distribution
In modeling a cold standby redundancy allocation problem (RAP) with imperfect switching mechanism, deriving a closed form version of a system reliability is too difficult. A convenient lower bound on system reliability is proposed and this approximation is widely used as a part of objective function for a system reliability maximization problem in the literature. Considering this lower bound do...
متن کاملModeling Gasoline Consumption Behaviors in Iran Based on Long Memory and Regime Change
In this study, for the first time, we model gasoline consumption behavior in Iran using the long-term memory model of the autoregressive fractionally integrated moving average and non-linear Markov-Switching regime change model. Initially, the long-term memory feature of the ARFIMA model is investigated using the data from 1927 to 2017. The results indicate that the time series studied has a lo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013